⁴⁸Ca(t,p),(pol t,p) **1983DaZV,1967Bj06**

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen and Balraj Singh NDS 157, 1 (2019) 15-Apr-2019

1967Bj06 (also 1966Hi01): E(t)=11.97 MeV beam from the Aldermaston Tandem generator. Enriched target. Measured σ(θ) with a magnetic spectrograph (FWHM=15-25 keV). Deduced levels, J, π, L-transfers. See 1968Br01 for analysis of these data.

1983DaZV,1983DaZZ: E=17 MeV. Polarized t. Measured σ(θ), analyzing powers; Q3D magnetic spectrometer. DWBA.

1989WaZO: E=37.3 MeV at Daresbury Lab. Measured σ(θ) from ≈30° to 65° in c.m. system. Heavily oxidized target. Deduced direct (simultaneous) and sequential (two-step) contributions; DWBA and CCBA, respectively. Spectroscopic factor of 1 was assumed for the first three states with configuration=2p²_{3/2}, and for the 3⁻ state with configuration=(2p_{3/2})(1g_{9/2}). CCBA calculations for the ⁵⁰Ca g.s. under-predict the data, but coherent addition of the direct reaction with a normalization, N=1000 MeV-fm^{3/2}, used for ¹⁶O(t,p) yielded a reasonable fit. However, application of the same N to the excited states of ¹⁸O and ⁵⁰Ca overpredicted the data. Only three excited states reported at 1.03, 3.00 and 3.99 MeV.

Others:

1966Wi11: E(t)=7.5 MeV. Measured proton spectra, $\sigma(\theta)$ at Los Alamos, FWHM=50 keV. Levels at 0, 1025 and 2999 keV, deduced L values.

1966Ve06: shell-model calculations, and explanation of (p,t) results in 1966Hi01.

1967Gl08: discussion of results for 0⁺ states in 1966Hi01.

⁵⁰Ca Levels

E(level) [†]	\mathbf{J}^{π}	L [‡]	$\mathrm{d}\sigma/\mathrm{d}\Omega^{\it c}$	Comments
0		0^a	100	L=0 (1966Wi11).
1029 <i>15</i>		2 ^a	42	E=1025 7, L=2 (1966Wi11).
2999 <i>15</i>		2 ^a	36	L: other: L=4 in 1989WaZO. E=2999 10, L=2 (1966Wi11).
3519 <i>15</i>			2	L=0 suggested in 1968Br01, 1967Gl08 and 1966Ve06 in theoretical analyses, by J^{π} =(1,2 ⁺) for a 3531 level in the Adopted Levels.
3993 15		3 ^a	21	J ^{π} : J ^{π} =2 ⁺ excluded by 1983DaZZ. Note that L(t,p)=3 disagrees with L(α ,2p)=4. 1968Br01 state that L=4 or 5 are inconsistent with $\sigma(\theta)$ data of 1967Bj06.
4470 <i>15</i>	$(0^+)^{\#}$	$(0)^{\text{#}a}$	2,2	•
4517 <i>15</i>		3^{b}		
4829 <i>15</i>	$(4^+)^{\#}$	(4)#b		
4878 <i>15</i>		1		
5043 15		1		
5110 [@] 20		b		
5168 [@] 20				
5281 [@] 20				
5362 [@] 20				
5434 [@] 20				
5516 20		(4)& (4)&		
5576 20		$(4)^{\&}$		

[†] From 1967Bj06; values from 1983DaZV agree within 10 keV (evaluator), but no uncertainties were given.

[‡] From DWBA (1983DaZV). L-values for selected levels were deduced by 1967Bj06 and further analysis by 1968Br01.

[#] Supported by excitation energy and analyzing power.

[@] Not observed in 1983DaZV.

[&]amp; Probably L=(4) but data are insufficient.

^a L-value also determined in 1967Bj06 and/or 1968Br01.

 $^{^{}b}$ $\sigma(\theta)$ obtained in 1967Bj06 but no L assigned in reanalysis of data by 1968Br01.

^c Relative cross sections at an angle where value is maximum (1968Br01,1967Bj06).